geocalc alternatives and similar packages
Based on the "Geolocation" category.
Alternatively, view geocalc alternatives based on common mentions on social networks and blogs.
SaaSHub - Software Alternatives and Reviews
Do you think we are missing an alternative of geocalc or a related project?
README
Geocalc
Documentation: http://hexdocs.pm/geocalc
Calculate distance, bearing and more between latitude/longitude points
All the formulas are adapted from http://www.movable-type.co.uk/scripts/latlong.html
Installation
First, add Geocalc to your mix.exs
dependencies:
def deps do
[{:geocalc, "~> 0.5"}]
end
And then fetch your dependencies:
$ mix deps.get
Usage
Calculate distance (in meters) between 2 points
Geocalc.distance_between([50.0663889, -5.7147222], [58.6438889, -3.07])
# => 968853.5464535094
Calculate if point is inside a circle given by a center point and a radius (in meters)
san_juan = [18.4655, 66.1057]
puerto_rico = [18.2208, 66.5901]
Geocalc.within?(170_000, san_juan, puerto_rico)
# => true
Get destination point given distance (meters) from start and end point
Geocalc.destination_point([50.0663889, -5.7147222], [58.6438889, -3.07], 100_000)
# => {:ok, [50.95412546615634, -5.488452905258299]}
Get destination point given distance (meters) and bearing from start point
Geocalc.destination_point([50.0663889, -5.7147222], 2.123, 100_000)
# => {:ok, [49.58859917965055, -4.533613856982982]}
Calculate bearing from start and end points
Geocalc.bearing([50.0663889, -5.7147222], [58.6438889, -3.07])
# => 0.1591708517503001
Get intersection point given start points and bearings
Geocalc.intersection_point([50.0663889, -5.7147222], 2.123, [55.0663889, -15.7147222], 2.123)
# => {:ok, [48.04228582473962, -1.0347033632388496]}
Geocalc.intersection_point([50.0663889, -5.7147222], 2.123, [50.0663889, -5.7147222], 2.123)
# => {:error, "No intersection point found"}
Get bounding box from a point and radius
berlin = [52.5075419, 13.4251364]
radius = 10_000
Geocalc.bounding_box(berlin, radius)
# => [[52.417520954378574, 13.277235453275123], [52.59756284562143, 13.573037346724874]]
Get bounding box from a list of points
berlin = [52.5075419, 13.4251364]
rome = [41.9102415, 12.3959161]
minsk = [53.8838884, 27.5949741]
Geocalc.bounding_box_for_points([berlin, rome, minsk])
# => [[41.9102415, 12.3959161], [53.8838884, 27.5949741]]
Get geographical center point
berlin = [52.5075419, 13.4251364]
london = [51.5286416, -0.1015987]
rome = [41.9102415, 12.3959161]
Geocalc.geographic_center([berlin, london, rome])
# => [48.810406537400254, 8.785092188535195]
Get maximum latitude reached when travelling on a great circle on given bearing from the point
berlin = [52.5075419, 13.4251364]
paris = [48.8588589, 2.3475569]
bearing = Geocalc.bearing(berlin, paris)
Geocalc.max_latitude(berlin, bearing)
# => 55.953467429882835
Get distance from the point to great circle defined by start-point and end-point
berlin = [52.5075419, 13.4251364]
london = [51.5286416, -0.1015987]
paris = [48.8588589, 2.3475569]
Geocalc.cross_track_distance_to(berlin, london, paris)
# => -877680.2992295175
Calculate how far the point is along a path from from start-point, heading towards end-point
berlin = [52.5075419, 13.4251364]
london = [51.5286416, -0.1015987]
paris = [48.8588589, 2.3475569]
Geocalc.along_track_distance_to(berlin, london, paris)
# => 310412.6031976226
Get the pair of meridians at which a great circle defined by two points crosses the given latitude
berlin = [52.5075419, 13.4251364]
paris = [48.8588589, 2.3475569]
Geocalc.crossing_parallels(berlin, paris, 12.3456)
# => {:ok, 123.179463369946, -39.81144878508576}
Convert degrees to radians
Geocalc.degrees_to_radians(245)
# => -2.007128639793479
Convert radians to degrees
Geocalc.radians_to_degrees(1.234)
# => 70.70299191914359
Geocalc.Point protocol
Everything which implements Geocalc.Point
protocol can be passed as a point
argument for any function in this library.
We already have implementations for List
, Tuple
and Map
.
You can define your own implementations if you need, everything we need to know
to do calculations are latitude
and longitude
.
Geocalc.DMS
Geocalc.DMS
is a struct which contains degrees, minutes and seconds, which also can be used in Geocalc.Point
.
Additionally now there is an options to convert Geocalc.DMS
to decimal degrees.
dms = %Geocalc.DMS{hours: 13, minutes: 31, seconds: 59.998, direction: "N"}
Geocalc.DMS.to_decimal(dms)
# => 13.533332777777778